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Abstract

The formulation of carrier transport through heterojunctions by tunneling and 

thermionic emission is derived from first principles.  The treatment of tunneling is 

discussed at three levels of approximation:  numerical solution of the one-band 

envelope equation for an arbitrarily specified potential profile; the WKB 

approximation for an arbitrary potential; and, an analytic formulation assuming 

constant internal field.  The effects of spatially varying carrier chemical potentials 

over tunneling distances are included.  Illustrative computational results are 

presented.  The described approach is used in exploratory physics models of 

irradiated heterojunction bipolar transistors within Sandia's QASPR program.



4



5

TABLE OF CONTENTS

1. INTRODUCTION 7
2. WAVE FUNCTIONS AND THE TUNNELING TRANSMISSION COEFFICIENT 7
3. DEVICE CURRENTS 12
4. CONCLUSION 15
ACKNOWLEDGMENTS 15
References 16



6



7

1. INTRODUCTION
Currents in heterojunction bipolar transistors (HBTs) are affected by band offsets at the 

heterojunction.  Consequences can be particularly significant for majority carriers emerging from 

the emitter into the base, because such carriers encounter a potential-energy peak arising from 

the combined influences of the band offset and the internal field.  This is depicted schematically 

in Fig. 1 for the case of conduction electrons near a forward-biased n-p heterojunction, where the 

potential energy corresponds to the conduction-band edge.  In modeling Sandia HBTs [1,2], we 

have largely adopted a common description of the cross-junction transport [3,4] based on 

thermionic-emission and tunneling in the WKB approximation with the assumption of 

Boltzmann carrier statistics.  We elaborated this treatment by forgoing the assumption of 

constant carrier chemical potential along the ramp of the potential peak [2].  Our resulting 

simulations of HBTs, using literature values for material parameters, generally yield collector 

currents in approximate agreement with experiment, so that device modeling can be 

accomplished with minor calibration adjustments.

The purposes of the present report are, first, to derive and document the above aspects of 

our device modeling; and, second, to assess the accuracy of simplifying approximations related 

to tunneling.  As part of the latter task, we compute carrier wave functions by numerically 

solving the one-band envelope equation, yielding a tunneling transmission coefficient more 

accurate than that from the WKB approximation.  The numerical determinations of the wave 

functions and the energy-dependent transmission coefficient are described in Sect. 2.  

Comparisons are made with the WKB approximation.  In Sect. 3, the carrier flux is formulated in 

terms of the transmission coefficient obtained in Sect. 2.  Illustrative computational results are 

presented.  Conclusions and implications are discussed in Sect. 4. 

2. WAVE FUNCTIONS AND THE TUNNELING TRANSMISSION 

COEFFICIENT

Planer device symmetry is assumed, allowing the use of one-dimensional wave functions 

for this part of the development.  The one-band envelope equation for carriers, with the effective-

mass approximation, has the form of the Schrödinger equation:
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  . (1)

Here Ψ is the longitudinal, x-axis part of the 3-D wave function, E is the corresponding 

component of state energy, m is the effective carrier mass, and is Planck's constant divided by 

2π; U is the potential energy, corresponding to the band edge for conduction electrons and its 

negative for holes, which varies with location along the x axis.  The effect of the modest change 

in effective mass at the junction is neglected. 

For purposes of numerical solution, the region of varying potential U(x) containing the 

heterojunction is artificially bracketed by intervals of constant potential, UL on the left and UR 

on the right.  Thus, an actual potential profile resembling that of Fig. 1 is modified as shown in 

Fig. 2.  In the region of constant potential on the left, the solution has the general form

  (2) (x)  AeiKLxi  BeiKLxi

where A and B are real, phase offsets are represented by the terms iα and iβ in the exponents, and 

KL is given by

  . (3)

The first exponential term in Eq. (2) describes a particle wave incident from the left, while the 

second term represents the reflected component.  Within the plateau on the right, we consider the 

case where only the transmitted component of the impinging wave is present:

  (4) (x)  CeiKRxi

with C real and

  . (5)

The particle flux associated with an individual wave function is given in general by [5]

(6)
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which for the simple wave function in Eq. (4) reduces to

  . (7)

The invariance of Φ(x) versus x required by particle conservation provides a check on numerical 

solutions for the wave function.  

The energy-dependent transmission coefficient characterizing band-to-band tunneling 

through the barrier is defined as the ratio of the transmitted flux to the incident flux, and is given 

by     

  . (8)
 
Tbb(E) 

C2KR

A2KL

The procedure to determine this quantity has three parts:  1) choose an amplitude C and a phase γ 

at a location x1 within the potential plateau to the right of the barrier; 2) numerically integrate 

Eq. (1) from x1 through the barrier into the region of constant potential on the left; and 3) extract 

the coefficient A from the resultant on the left.  This calculation is performed for energies E  (x)

greater than both UL and UR.

The numerical integration is performed from right to left in order to initialize within the 

region where the solution has a single component.  To this end the x axis is discretized with a 

constant (negative) step -Δx.  Approximating the derivative of Eq. (1) in terms of finite 

differences gives  

  .  (9)

In order to compute using real numbers, we separate the discretized wave function into real and 

imaginary components as 

  (10)
 
i   i

r  i i
i

where φr(x) and φi(x) are real and are independent solutions of Eqs. (1).  The full solution is then 

obtained by separate integrations for the two components.
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Initiating the integration on the right side of the peak avoids complexities arising from the 

presence of two wave-function components in Eq. (2).  A convenient starting specification is Ψ1 

= 1, corresponding to C = 1 and γ = -KRx1 .  Making use of Eqs. (4) and (10), one then obtains

   . (11)
 

1
r  1 1

i  0

2
r  cos(KRx) 2

i   sin(KRx)

The range of integration is chosen to encompass more than one oscillation cycle on the left side 

of the peak for all KL of interest. 

To determine Tbb from the numerically obtained wave function Ψ(x), it is necessary to 

separate the contributions of the two terms in Eq. (2) and thereby evaluate the coefficient A.  

This is accomplished by extracting two quantities from the numerical results on the left side of 

the peak that, on the basis of Eq. (2), depend differently on A and B.  These quantities are the 

average squared magnitude of Ψ and the net particle flux Φ.  Using Eqs. (2) and (10), it can be 

shown that

  (12) 

 

KL






dx

x0

x0/KL
 

KL


r 2  i 2







dx

x0

x0/KL


  A2  B2

in the left plateau region.  From Eqs. (2), (6) and (10) one has 

  (13)

in the same region, where the derivatives are given in terms of finite differences as

  . (14)
 
d
dx
(xi) 

i1 i1
2x

Combining Eqs. (12) and (13) gives A2 in terms of the numerically determined  and , 
 
 i

r

 
 i

i

yielding Tbb(E) via Eq. (8).

A verification test of the above numerical procedure is provided by comparing to analytic 

results for a rectangular barrier with UL = UR and impinging carrier kinetic energies, E - UL, 
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that are less than the barrier height.  Joining relations between wave functions in the three x-axis 

intervals of this configuration have been derived elsewhere [6], yielding equations that determine 

the transmission coefficient.  Such a comparison is shown in Fig. 3 for a barrier of height 0.2 eV 

and width 10 nm with a normalized carrier effective mass of 0.1.  The numerical calculation was 

performed with Δx = 0.01 nm.  The numerical and analytic results are accurately consistent.

The potential profile U(x) near heterojunctions in bipolar devices resembles the idealized, 

triangular shape of Figs. 1 and 2, but the ramp depicted as a straight line actually has a varying 

slope due to the decrease of the internal field with distance from the junction.  In this situation, 

three levels of accuracy can be considered for the calculation of the tunneling transmission 

coefficient pursuant to the evaluation of device current.  The most accurate method is the 

approach discussed above based on the numerical solution of Eq. (1).  A simpler alternative, 

although still requiring numerical integration, is to employ the WKB approximation [7]:

   (15)

where the subscript max indicates the values of quantities at the apex of the peak, and xE is the 

value of x along the ramp where U(x) = E.  A widely used further simplification is to assume that 

the internal field F is constant over relevant tunneling distances, so that U(x) varies linearly with 

x.  Equation (15) then reduces to 

   (16)

where q is the elementary charge.  In modeling Sandia HBTs [1,2], we have employed Eq. (15) 

to accommodate instances where the spatial variation of the internal field is consequential.        

In order to assess the adequacy of Eq. (15) for present purposes, we compare with results 

from the numerical, wave-function approach.  Since the principal issue is the accuracy of the 

WKB approximation, it suffices to perform these calculations for the situation of constant field. 

We treat a triangular barrier with F = 10 MV/m and Umax = 0.2 eV and a normalized 

effective mass of 0.1.  The specified  field is representative of devices, while the peak amplitude 

is somewhat larger for purposes of illustration.  Results for the energy-dependent transmission 
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coefficient are shown in Fig. 4 using linear and logarithmic vertical scales.  Differences range up 

to about a factor of two.

3. DEVICE CURRENTS

Whereas the transmission coefficient for a single carrier state was evaluated in one dimension, 

the combined flux of carriers traversing the barrier involves an ensemble of 3-D band states, 

whose occupation probabilities depend on total state energy and the chemical potential of the 

carriers.  We consider this problem for a structure having planer symmetry:  the potential plateau 

to the left of the barrier in Fig. 2 extends for a distance Lwf much greater than the width of the 

barrier, while the lateral, y and z ranges, with invariant U(x), also span distances of Lwf .  Within 

the plateau region of volume Vwf = Lwf × Lwf × Lwf where U(x) = UL, the normalized wave 

functions are accurately approximated as [8]

    (17)
 
(x,y,z)  x (x)y(y)z (z)  eiKxx

Lwf
1/2

e
iKyy

Lwf
1/2

eiKzz

Lwf
1/2

for periodic boundary conditions, neglecting the relatively small contribution to the volume 

integral from the barrier region.  The allowed K values for the three axes range from − ∞ to + ∞, 

and are separated by a constant interval of  2π/ Lwf  .  Spin degeneracy increases the number of 

3-D states by a factor of 2.   The associated axial energies are given by

   (18)

with total energy E equal to the sum of the three.  Transmission from left to right through the 

barrier region occurs only for positive Kx such that Ex is greater than both UL and UR.  

Defining a minimum energy Ex0 as the larger of UL and UR , this implies that Kx > Kx0 where

   . (19)

From Eq. (6), the particle flux along the x axis for an individual state is
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  . (20)

The density of such states in {Kx,Ky,Kz} space is Vwf/(8π3).

We employ the large-volume eigenstates of Eq. (17) while recognizing that scattering 

events limit wave-function coherence to microscopic distances.  This choice removes the need to 

solve Eq. (1) iteratively as an eigenvalue problem, allowing instead the use of known energy 

eigenvalues for the bulk, which greatly expedites the calculations.  In earlier studies concerned 

with the tunneling of carriers to defect traps [1,2,9], we compared predicted rates obtained with 

such bulk eigenstates to results from local-state calculations, and found good agreement.  Key to 

this consistency are compensating scaling effects of the number of eigenstates and their 

wavefunction amplitudes.

Energy-dependent occupation probabilities for the carrier states are computed here 

assuming Boltzmann rather than Fermi-Dirac statistics.  This is justified in modeling HBTs 

because relevant concentrations near the heterojunction are small compared to the band effective 

density of states, in marked contrast to the situation for trapping at defects [1,2].   The occupation 

probability is then given by                 

   (21)
 
P(E)  exp  E

kB T







where ϕ is the chemical potential, kB the Boltzmann constant, and T the temperature.  As a first 

approximation it can be assumed that ϕ is invariant, although this quantity necessarily varies with 

x in a biased device with current flowing.  Our simulations typically show differences of several 

times kBT between contacts [2].  We have elected to include a first-order correction for this 

effect as follows:  for UL < E < Umax, the employed value of ϕ(x) is that at the intersection of E 

and U(x); whereas, for E ≥ Umax, the value at the peak is used.  This dependence will be 

represented by the function ϕE(E).  

Combining the above elements and integrating over {Kx,Ky,Kz} space yields the total 

flux of carriers from left to right through the barrier region:   
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.  (22)

The factor of 2 takes account of spin degeneracy.  The three axial integrals are separable, a large 

computational benefit from the use of Boltzmann statistics.  Evaluating the transverse integrals 

and changing variables from Kx to Ex, we obtain

   . (23)

When the WKB approximation is used to compute the transmission coefficient, so that Tbb = 1 

for E > Umax, there is a straightforward separation between the regimes of tunneling and 

thermionic emission without tunneling.  When in addition ϕE(Ex) is replaced by a constant 

chemical potential ϕ, Eq. (23) becomes consistent with earlier treatments of thermionic emission 

and tunneling through junctions with barriers [3,4]. 

Figure 5 shows incremental fluxes ΔJbb[L=>R] from the integration of Eq. (23) for a 

triangular potential like that in Fig. 2 with normalized effective mass = 0.1, T = 300 K, field = 10 

MV/m, UL =UR, and Umax - UL = 0.2 eV.  The displayed results utilize the two transmission 

coefficients plotted in Fig. 4, which were respectively computed using the wave-function 

approach and the WKB approximation.  The curves differ significantly at particular energies, but 

their areas, and hence the carrier fluxes, agree to about 2%.  This is evidence for the adequacy of 

the WKB method for many purposes.

The reverse carrier flux, going from right to left, is included in device modeling.  We 

formulate this contribution for the triangular potential configuration of Fig. 2 by assuming that 

the prefactor and transmission coefficient in Eq. (23) have the same values, and further that the 

net incremental flux at each value of Ex goes to zero when ϕE(Ex) = ϕR , where the latter 

chemical potential is adjacent to the junction on the right side.  These stipulations are satisfied by 

the following equation for the net combined flux:
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  . (24)

In simulations of HBTs we generally employ the effective mass from the left side of the 

heterojunction, both in Eq. (24) and in the calculation of the transmission coefficient, because the 

potential peak is on that side.  A detailed treatment of the effective-mass offset, while feasible, 

was not deemed worthwhile.  The evaluations of the local chemical potentials ϕE(Ex) and ϕR 

from local carrier concentrations use the local masses on the respective sides.  In the case of light 

and heavy holes, whose effective masses differ by a large multiple, tunneling − but not 

thermionic emission − is assumed to occur entirely via the light species.  

4. CONCLUSION

The formulation of band-to-same-band tunneling used to model Sandia HBTs was 

reinforced by derivation from first principles.  Calculation of the transmission coefficient via the 

WKB approximation was assessed by comparison to numerical solutions of the one-band 

envelope equation, and was deemed acceptable for device-relevant conditions.  Our earlier, 

plausible extension of device models to accommodate tunneling from spatially varying carrier 

chemical potentials was shown to be rigorous. 

.
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Fig. 1.  Conduction-band edge near an n-p heterojunction.
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Fig. 2. Potential profile used in the numerical solution of Eq. 1.  The region of varying U(x) is 
artificially extended by plateaus to produce bounding regions where the wave function has 
simple form.
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Fig. 3. Transmission coefficient for a rectangular barrier, as calculated analytically and using the 
numerical procedure of Sect. 2.  The height of the barrier is 0.2 eV, the width is 10 nm, and the 
normalized carrier mass is 0.1.
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Fig. 4. Transmission coefficient for a triangular barrier as calculated using the numerical, wave-
function procedure of Sect. 2 and the WKB approximation.  The height of the barrier is 0.2 eV, 
the width is 20 nm, and the normalized carrier mass is 0.1.  Results are displayed in linear (a) and 
semi-log (b) formats. 
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Fig. 5. Tunneled-flux increments from the integral of Eq. (23) for the case of a triangular 
potential with normalized effective mass = 0.1, T = 300 K, field = 10 MV/m, UL = UR, and 
Umax - UL = 0.2 eV, shown for the transmission coefficients in Fig. 4.  (The additional 
contribution from thermionic emission is not included.)  
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